[color=rgba(0, 0, 0, 0.55)] [color=rgba(0, 0, 0, 0.55)]
[color=rgba(0, 0, 0, 0.55)]目录 [color=rgba(0, 0, 0, 0.55)]001.Spark-教程简介 [color=rgba(0, 0, 0, 0.55)]002.Spark-文件结构-介绍 [color=rgba(0, 0, 0, 0.55)]003.Spark-基础概念-介绍-分布式 [color=rgba(0, 0, 0, 0.55)]004.Spark-基础概念-介绍-计算 [color=rgba(0, 0, 0, 0.55)]005.Spark-基础概念-介绍-分布式基础架构 [color=rgba(0, 0, 0, 0.55)]006.Spark-基础概念-介绍-框架 [color=rgba(0, 0, 0, 0.55)]007.Spark-基础概念-介绍-Spark和MR的关系 [color=rgba(0, 0, 0, 0.55)]008.Spark-介绍 [color=rgba(0, 0, 0, 0.55)]009.Spark-部署方式-介绍 [color=rgba(0, 0, 0, 0.55)]010.Spark-解压后的文件结构 [color=rgba(0, 0, 0, 0.55)]011.Spark-部署环境-Local [color=rgba(0, 0, 0, 0.55)]012.Spark-部署环境-Local-演示 [color=rgba(0, 0, 0, 0.55)]013.Spark-部署环境-Yarn-演示 [color=rgba(0, 0, 0, 0.55)]014.Spark-部署环境-Yarn-历史服务 [color=rgba(0, 0, 0, 0.55)]015.Spark-部署环境-Yarn-两种执行方式Cluster和Client [color=rgba(0, 0, 0, 0.55)]016.Spark-部署环境-几种模式的对比 [color=rgba(0, 0, 0, 0.55)]017.Spark-数据结构-说明 [color=rgba(0, 0, 0, 0.55)]018.Spark-RDD-介绍 [color=rgba(0, 0, 0, 0.55)]019.Spark-RDD-数据处理流程简介 [color=rgba(0, 0, 0, 0.55)]020.Spark-RDD-计算原理 [color=rgba(0, 0, 0, 0.55)]021.Spark-RDD-计算原理-补充 [color=rgba(0, 0, 0, 0.55)]022.Spark-RDD-代码-环境的准备 [color=rgba(0, 0, 0, 0.55)]023.Spark-RDD-代码-对接内存数据源构建RDD对象 [color=rgba(0, 0, 0, 0.55)]024.Spark-RDD-代码-对接磁盘数据源构建RDD对象 [color=rgba(0, 0, 0, 0.55)]025.Spark-RDD-代码-RDD的理解 [color=rgba(0, 0, 0, 0.55)]026.Spark-RDD-代码-RDD的分区 [color=rgba(0, 0, 0, 0.55)]027.Spark-RDD-代码-内存数据源-分区数量的设定 [color=rgba(0, 0, 0, 0.55)]028.Spark-RDD-代码-磁盘文件数据源-分区数量的设定 [color=rgba(0, 0, 0, 0.55)]029.Spark-RDD-代码-内存数据源-分区数据的分配 [color=rgba(0, 0, 0, 0.55)]030.Spark-RDD-代码-磁盘文件数据源-分区数据的分配 [color=rgba(0, 0, 0, 0.55)]031.Spark-RDD-代码-磁盘文件数据源-分区数据的分配-演示 [color=rgba(0, 0, 0, 0.55)]032 .Spark-RDD-课件梳理 [color=rgba(0, 0, 0, 0.55)]033.Spark-RDD-方法-介绍 [color=rgba(0, 0, 0, 0.55)]034.Spark-RDD-方法-方法的两大类-转换和行动 [color=rgba(0, 0, 0, 0.55)]035.Spark-RDD-方法-数据处理的两大类-单值和键值 [color=rgba(0, 0, 0, 0.55)]036.Spark-RDD-方法-转换-map [color=rgba(0, 0, 0, 0.55)]037.Spark-RDD-方法-转换-map-1 [color=rgba(0, 0, 0, 0.55)]038.Spark-RDD-方法-转换-map-2 [color=rgba(0, 0, 0, 0.55)]039.Spark-RDD-方法-转换-map-3 [color=rgba(0, 0, 0, 0.55)]040.Spark-RDD-方法-转换-map-4 [color=rgba(0, 0, 0, 0.55)]041.Spark-RDD-方法-转换-filter [color=rgba(0, 0, 0, 0.55)]042.Spark-RDD-方法-转换-flatMap [color=rgba(0, 0, 0, 0.55)]043.Spark-RDD-方法-转换-flatMap-1 [color=rgba(0, 0, 0, 0.55)]044.Spark-RDD-方法-转换-groupBy [color=rgba(0, 0, 0, 0.55)]045.Spark-RDD-回顾-原理 [color=rgba(0, 0, 0, 0.55)]046.Spark-RDD-回顾-方法 [color=rgba(0, 0, 0, 0.55)]047.Spark-RDD-Shuffle [color=rgba(0, 0, 0, 0.55)]048.Spark-RDD-Shuffle-原理 [color=rgba(0, 0, 0, 0.55)]049.Spark-RDD-Shuffle-原理-补充 [color=rgba(0, 0, 0, 0.55)]050.Spark-RDD-Shuffle-演示 [color=rgba(0, 0, 0, 0.55)]051.Spark-RDD-方法-distinct [color=rgba(0, 0, 0, 0.55)]052.Spark-RDD-方法-sortBy [color=rgba(0, 0, 0, 0.55)]053.Spark-RDD-方法-KV类型数据介绍 [color=rgba(0, 0, 0, 0.55)]054.Spark-RDD-方法-KV类型数据补充 [color=rgba(0, 0, 0, 0.55)]055.Spark-RDD-方法-KV-mapValues [color=rgba(0, 0, 0, 0.55)]056.Spark-RDD-方法-KV-wordCount [color=rgba(0, 0, 0, 0.55)]057.Spark-RDD-方法-KV-groupByKey [color=rgba(0, 0, 0, 0.55)]058.Spark-RDD-方法-KV-reduceByKey [color=rgba(0, 0, 0, 0.55)]059.Spark-RDD-方法-KV-sortByKey [color=rgba(0, 0, 0, 0.55)]060.Spark-RDD-方法-KV-reduceByKey和groupByKey的区别 [color=rgba(0, 0, 0, 0.55)]061.Spark-RDD-WordCount程序在环境中运行 [color=rgba(0, 0, 0, 0.55)]062.Spark-RDD-转换方法的回顾 [color=rgba(0, 0, 0, 0.55)]063.Spark-RDD-行动算子-介绍 [color=rgba(0, 0, 0, 0.55)]064.Spark-RDD-行动算子-collect [color=rgba(0, 0, 0, 0.55)]065.Spark-RDD-行动算子-collect-补充 [color=rgba(0, 0, 0, 0.55)]066.Spark-RDD-行动算子-其他方法-1 [color=rgba(0, 0, 0, 0.55)]067.Spark-RDD-行动算子-其他方法-2 [color=rgba(0, 0, 0, 0.55)]068.Spark-RDD-行动算子-其他方法-3 [color=rgba(0, 0, 0, 0.55)]069.Spark-RDD-行动算子-Driver端和Executor端数据传输 [color=rgba(0, 0, 0, 0.55)]070.Spark-RDD-序列化-1 [color=rgba(0, 0, 0, 0.55)]071.Spark-RDD-序列化-2 [color=rgba(0, 0, 0, 0.55)]072.Spark-案例-数据格式说明 [color=rgba(0, 0, 0, 0.55)]073.Spark-案例-需求介绍 [color=rgba(0, 0, 0, 0.55)]074.Spark-案例-需求分析 [color=rgba(0, 0, 0, 0.55)]075.Spark-案例-需求设计 [color=rgba(0, 0, 0, 0.55)]076.Spark-案例-开发原则 [color=rgba(0, 0, 0, 0.55)]077.Spark-案例-代码实现-1 [color=rgba(0, 0, 0, 0.55)]078.Spark-案例-代码实现-2 [color=rgba(0, 0, 0, 0.55)]079.Spark-案例-代码实现-3 [color=rgba(0, 0, 0, 0.55)]080.Spark-案例-代码实现-4 [color=rgba(0, 0, 0, 0.55)]081.Spark-RDD-KRYO序列化框架 [color=rgba(0, 0, 0, 0.55)]082.Spark-RDD-依赖关系-介绍 [color=rgba(0, 0, 0, 0.55)]083.Spark-RDD-依赖关系-原理 [color=rgba(0, 0, 0, 0.55)]084.Spark-RDD-依赖关系-血缘关系 [color=rgba(0, 0, 0, 0.55)]085.Spark-RDD-依赖关系-依赖关系 [color=rgba(0, 0, 0, 0.55)]086.Spark-RDD-依赖关系-宽窄依赖关系 [color=rgba(0, 0, 0, 0.55)]087.Spark-RDD-依赖关系-作业,阶段和任务的关系 [color=rgba(0, 0, 0, 0.55)]088.Spark-RDD-依赖关系-任务的数量 [color=rgba(0, 0, 0, 0.55)]089.Spark-RDD-依赖关系-分区的数量 [color=rgba(0, 0, 0, 0.55)]090Spark-RDD-持久化和序列化的关系 [color=rgba(0, 0, 0, 0.55)]091.Spark-RDD-持久化-cache [color=rgba(0, 0, 0, 0.55)]092.Spark-RDD-持久化-persist [color=rgba(0, 0, 0, 0.55)]093.Spark-RDD-持久化-checkpoint [color=rgba(0, 0, 0, 0.55)]094.Spark-RDD-持久化-shuffle算子的持久化 [color=rgba(0, 0, 0, 0.55)]095.Spark-RDD-分区器 [color=rgba(0, 0, 0, 0.55)]096.Spark-RDD-自定义分区器 [color=rgba(0, 0, 0, 0.55)]097.Spark-两个案例 [color=rgba(0, 0, 0, 0.55)]098.Spark-第一个案例问题原因 [color=rgba(0, 0, 0, 0.55)]099.Spark-广播变量 [color=rgba(0, 0, 0, 0.55)]100.Spark-RDD的局限性 [color=rgba(0, 0, 0, 0.55)]101.SparkSQL-介绍 [color=rgba(0, 0, 0, 0.55)]102.SparkSQL-环境对象的封装 [color=rgba(0, 0, 0, 0.55)]103.SparkSQL-模型对象的封装 [color=rgba(0, 0, 0, 0.55)]104.SparkSQL-SQL的操作 [color=rgba(0, 0, 0, 0.55)]105.SparkSQL-不同场景下环境对象的转换 [color=rgba(0, 0, 0, 0.55)]106.SparkSQL-不同场景下模型数据对象的转换 [color=rgba(0, 0, 0, 0.55)]107.SparkSQL-使用SQL的方式来访问数据模型 [color=rgba(0, 0, 0, 0.55)]108.SparkSQL-使用DSL的方式来访问数据模型 [color=rgba(0, 0, 0, 0.55)]109.SparkSQL-自定义udf函数对象 [color=rgba(0, 0, 0, 0.55)]110.SparkSQL-自定义udf函数的底层实现原理 [color=rgba(0, 0, 0, 0.55)]111.SparkSQL-自定义udaf函数的底层实现原理 [color=rgba(0, 0, 0, 0.55)]112.SparkSQL-自定义udaf函数的实现步骤-1 [color=rgba(0, 0, 0, 0.55)]113.SparkSQL-自定义udaf函数的实现步骤-2 [color=rgba(0, 0, 0, 0.55)]114.SparkSQL-自定义udaf函数的实现步骤-回顾 [color=rgba(0, 0, 0, 0.55)]115.SparkSQL-数据源-CSV [color=rgba(0, 0, 0, 0.55)]116.SparkSQL-数据源-JSON [color=rgba(0, 0, 0, 0.55)]117.SparkSQL-数据源-Parquet [color=rgba(0, 0, 0, 0.55)]118.SparkSQL-数据源-JDBC [color=rgba(0, 0, 0, 0.55)]119.SparkSQL-数据源-Hive [color=rgba(0, 0, 0, 0.55)]120.SparkSQL-案例-数据准备 [color=rgba(0, 0, 0, 0.55)]121.SparkSQL-案例-数据准备-补充 [color=rgba(0, 0, 0, 0.55)]122.SparkSQL-案例-需求分析 [color=rgba(0, 0, 0, 0.55)]123.SparkSQL-案例-需求设计 [color=rgba(0, 0, 0, 0.55)]124.SparkSQL-案例-SQL实现-1 [color=rgba(0, 0, 0, 0.55)]125.SparkSQL-案例-SQL实现-2 [color=rgba(0, 0, 0, 0.55)]126.SparkSQL-案例-SQL实现-3 [color=rgba(0, 0, 0, 0.55)]127.SparkSQL-案例-SQL实现-4 [color=rgba(0, 0, 0, 0.55)]128.SparkSQL-案例-SQL实现-5 [color=rgba(0, 0, 0, 0.55)]129.SparkSQL-案例-SQL实现-6 [color=rgba(0, 0, 0, 0.55)]130.SparkSQL-案例-SQL实现-7 [color=rgba(0, 0, 0, 0.55)]131.SparkSQL-案例-SQL实现-8 [color=rgba(0, 0, 0, 0.55)]132.SparkSQL-案例-SQL实现-9 [color=rgba(0, 0, 0, 0.55)]133.SparkStreaming-介绍 [color=rgba(0, 0, 0, 0.55)]134.SparkStreaming-原理 [color=rgba(0, 0, 0, 0.55)]135.SparkStreaming-原理-补充 [color=rgba(0, 0, 0, 0.55)]136.SparkStreaming-课件梳理 [color=rgba(0, 0, 0, 0.55)]137.SparkStreaming-环境准备 [color=rgba(0, 0, 0, 0.55)]138.SparkStreaming-网络(Socket)数据流处理演示 [color=rgba(0, 0, 0, 0.55)]139.SparkStreaming-Kafka数据流处理演示 [color=rgba(0, 0, 0, 0.55)]140.SparkStreaming-DStream方法介绍 [color=rgba(0, 0, 0, 0.55)]141.SparkStreaming-DStream输出方法介绍 [color=rgba(0, 0, 0, 0.55)]142.SparkStreaming-窗口操作 [color=rgba(0, 0, 0, 0.55)]143.SparkStreaming-回顾-1 [color=rgba(0, 0, 0, 0.55)]144.SparkStreaming-回顾-2 [color=rgba(0, 0, 0, 0.55)]145.SparkStreaming-关闭-1 [color=rgba(0, 0, 0, 0.55)]146.SparkStreaming-关闭-2 [color=rgba(0, 0, 0, 0.55)]147.SparkStreaming-关闭-3 [color=rgba(0, 0, 0, 0.55)]148.Spark-内核-运行流程-1 [color=rgba(0, 0, 0, 0.55)]149.Spark-内核-运行流程-2 [color=rgba(0, 0, 0, 0.55)]150.Spark-内核-运行流程-3 [color=rgba(0, 0, 0, 0.55)]151.Spark-内核-核心对象 [color=rgba(0, 0, 0, 0.55)]152.Spark-内核-核心对象通信流程-Netty [color=rgba(0, 0, 0, 0.55)]153.Spark-内核-Task任务的调度执行 [color=rgba(0, 0, 0, 0.55)]154.Spark-内核-Shuffle底层的实现原理-1 [color=rgba(0, 0, 0, 0.55)]155.Spark-内核-Shuffle底层的实现原理-2 [color=rgba(0, 0, 0, 0.55)]156.Spark-内核-内存管理 [color=rgba(0, 0, 0, 0.55)]157.Spark-内核-内存管理-补充
|