论坛元老
- 威望
- 1472
- 贡献
- 1724
- 热心值
- 0
- 金币
- 237
- 注册时间
- 2021-4-11
|
;
; Chapter 5 of The Little Schemer:
; *Oh My Gawd*: It's Full of Stars
;
; Code examples assemled by Peteris Krumins ([email protected]).
; His blog is at http://www.catonmat.net -- good coders code, great reuse.
;
; Get yourself this wonderful book at Amazon: http://bit.ly/4GjWdP
;
; The atom? primitive
;
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
; The add1 primitive
;
(define add1
(lambda (n) (+ n 1)))
; The rember* function removes all matching atoms from an s-expression
;
(define rember*
(lambda (a l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) a)
(rember* a (cdr l)))
(else
(cons (car l) (rember* a (cdr l))))))
(else
(cons (rember* a (car l)) (rember* a (cdr l)))))))
; Examples of rember*
;
(rember*
'cup
'((coffee) cup ((tea) cup) (and (hick)) cup))
;==> '((coffee) ((tea)) (and (hick)))
(rember*
'sauce
'(((tomato sauce)) ((bean) sauce) (and ((flying)) sauce)))
;==> '(((tomato)) ((bean)) (and ((flying))))
; The insertR* function insers new to the right of all olds in l
;
(define insertR*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old)
(cons old (cons new (insertR* new old (cdr l)))))
(else
(cons (car l) (insertR* new old (cdr l))))))
(else
(cons (insertR* new old (car l)) (insertR* new old (cdr l)))))))
; Example of insertR*
;
(insertR*
'roast
'chuck
'((how much (wood)) could ((a (wood) chuck)) (((chuck)))
(if (a) ((wood chuck))) could chuck wood))
; ==> ((how much (wood)) could ((a (wood) chuck roast)) (((chuck roast)))
; (if (a) ((wood chuck roast))) could chuck roast wood)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The first commandment (final version) ;
; ;
; When recurring on a list of atoms, lat, ask two questions about it: ;
; (null? lat) and else. ;
; When recurring on a number, n, ask two questions about it: (zero? n) and ;
; else. ;
; When recurring on a list of S-expressions, l, ask three questions about ;
; it: (null? l), (atom? (car l)), and else. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The fourth commandment (final version) ;
; ;
; Always change at least one argument while recurring. When recurring on a ;
; list of atoms, lat, use (cdr l). When recurring on a number, n, use ;
; (sub1 n). And when recurring on a list of S-expressions, l, use (car l) ;
; and (cdr l) if neither (null? l) nor (atom? (car l)) are true. ;
; ;
; It must be changed to be closer to termination. The changing argument must ;
; be tested in the termination condition: ;
; * when using cdr, test the termination with null? and ;
; * when using sub1, test termination with zero?. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The occur* function counts the number of occurances of an atom in l
;
(define occur*
(lambda (a l)
(cond
((null? l) 0)
((atom? (car l))
(cond
((eq? (car l) a)
(add1 (occur* a (cdr l))))
(else
(occur* a (cdr l)))))
(else
(+ (occur* a (car l))
(occur* a (cdr l)))))))
; Example of occur*
;
(occur*
'banana
'((banana)
(split ((((banana ice)))
(cream (banana))
sherbet))
(banana)
(bread)
(banana brandy)))
;==> 5
; The subst* function substitutes all olds for news in l
;
(define subst*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old)
(cons new (subst* new old (cdr l))))
(else
(cons (car l) (subst* new old (cdr l))))))
(else
(cons (subst* new old (car l)) (subst* new old (cdr l)))))))
; Example of subst*
;
(subst*
'orange
'banana
'((banana)
(split ((((banana ice)))
(cream (banana))
sherbet))
(banana)
(bread)
(banana brandy)))
;==> '((orange)
; (split ((((orange ice)))
; (cream (orange))
; sherbet))
; (orange)
; (bread)
; (orange brandy))
; The insertL* function insers new to the left of all olds in l
;
(define insertL*
(lambda (new old l)
(cond
((null? l) '())
((atom? (car l))
(cond
((eq? (car l) old)
(cons new (cons old (insertL* new old (cdr l)))))
(else
(cons (car l) (insertL* new old (cdr l))))))
(else
(cons (insertL* new old (car l)) (insertL* new old (cdr l)))))))
; Example of insertL*
;
(insertL*
'pecker
'chuck
'((how much (wood)) could ((a (wood) chuck)) (((chuck)))
(if (a) ((wood chuck))) could chuck wood))
; ==> ((how much (wood)) could ((a (wood) chuck pecker)) (((chuck pecker)))
; (if (a) ((wood chuck pecker))) could chuck pecker wood)
; The member* function determines if element is in a list l of s-exps
;
(define member*
(lambda (a l)
(cond
((null? l) #f)
((atom? (car l))
(or (eq? (car l) a)
(member* a (cdr l))))
(else
(or (member* a (car l))
(member* a (cdr l)))))))
; Example of member*
;
(member
'chips
'((potato) (chips ((with) fish) (chips)))) ; #t
; The leftmost function finds the leftmost atom in a non-empty list
; of S-expressions that doesn't contain the empty list
;
(define leftmost
(lambda (l)
(cond
((atom? (car l)) (car l))
(else (leftmost (car l))))))
; Examples of leftmost
;
(leftmost '((potato) (chips ((with) fish) (chips)))) ; 'potato
(leftmost '(((hot) (tuna (and))) cheese)) ; 'hot
; Examples of not-applicable leftmost
;
; (leftmost '(((() four)) 17 (seventeen))) ; leftmost s-expression is empty
; (leftmost '()) ; empty list
; Or expressed via cond
;
; (or a b) = (cond (a #t) (else b))
; And expressed via cond
;
; (and a b) = (cond (a b) (else #f))
; The eqlist? function determines if two lists are equal
;
(define eqlist?
(lambda (l1 l2)
(cond
; case 1: l1 is empty, l2 is empty, atom, list
((and (null? l1) (null? l2)) #t)
((and (null? l1) (atom? (car l2))) #f)
((null? l1) #f)
; case 2: l1 is atom, l2 is empty, atom, list
((and (atom? (car l1)) (null? l2)) #f)
((and (atom? (car l1)) (atom? (car l2)))
(and (eq? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2))))
((atom? (car l1)) #f)
; case 3: l1 is a list, l2 is empty, atom, list
((null? l2) #f)
((atom? (car l2)) #f)
(else
(and (eqlist? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2)))))))
; Example of eqlist?
;
(eqlist?
'(strawberry ice cream)
'(strawberry ice cream)) ; #t
(eqlist?
'(strawberry ice cream)
'(strawberry cream ice)) ; #f
(eqlist?
'(banan ((split)))
'((banana) split)) ; #f
(eqlist?
'(beef ((sausage)) (and (soda)))
'(beef ((salami)) (and (soda)))) ; #f
(eqlist?
'(beef ((sausage)) (and (soda)))
'(beef ((sausage)) (and (soda)))) ; #t
; eqlist? rewritten
;
(define eqlist2?
(lambda (l1 l2)
(cond
; case 1: l1 is empty, l2 is empty, atom, list
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
; case 2: l1 is atom, l2 is empty, atom, list
((and (atom? (car l1)) (atom? (car l2)))
(and (eq? (car l1) (car l2))
(eqlist2? (cdr l1) (cdr l2))))
((or (atom? (car l1)) (atom? (car l2)))
#f)
; case 3: l1 is a list, l2 is empty, atom, list
(else
(and (eqlist2? (car l1) (car l2))
(eqlist2? (cdr l1) (cdr l2)))))))
; Tests of eqlist2?
;
(eqlist2?
'(strawberry ice cream)
'(strawberry ice cream)) ; #t
(eqlist2?
'(strawberry ice cream)
'(strawberry cream ice)) ; #f
(eqlist2?
'(banan ((split)))
'((banana) split)) ; #f
(eqlist2?
'(beef ((sausage)) (and (soda)))
'(beef ((salami)) (and (soda)))) ; #f
(eqlist2?
'(beef ((sausage)) (and (soda)))
'(beef ((sausage)) (and (soda)))) ; #t
; The equal? function determines if two s-expressions are equal
;
(define equal??
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2))
(eq? s1 s2))
((atom? s1) #f)
((atom? s2) #f)
(else (eqlist? s1 s2)))))
; Examples of equal??
;
(equal?? 'a 'a) ; #t
(equal?? 'a 'b) ; #f
(equal?? '(a) 'a) ; #f
(equal?? '(a) '(a)) ; #t
(equal?? '(a) '(b)) ; #f
(equal?? '(a) '()) ; #f
(equal?? '() '(a)) ; #f
(equal?? '(a b c) '(a b c)) ; #t
(equal?? '(a (b c)) '(a (b c))) ; #t
(equal?? '(a ()) '(a ())) ; #t
; equal? simplified
;
(define equal2??
(lambda (s1 s2)
(cond
((and (atom? s1) (atom? s2))
(eq? s1 s2))
((or (atom? s1) (atom? s2)) #f)
(else (eqlist? s1 s2)))))
; Tests of equal2??
;
(equal2?? 'a 'a) ; #t
(equal2?? 'a 'b) ; #f
(equal2?? '(a) 'a) ; #f
(equal2?? '(a) '(a)) ; #t
(equal2?? '(a) '(b)) ; #f
(equal2?? '(a) '()) ; #f
(equal2?? '() '(a)) ; #f
(equal2?? '(a b c) '(a b c)) ; #t
(equal2?? '(a (b c)) '(a (b c))) ; #t
(equal2?? '(a ()) '(a ())) ; #t
; eqlist? rewritten using equal2??
;
(define eqlist3?
(lambda (l1 l2)
(cond
((and (null? l1) (null? l2)) #t)
((or (null? l1) (null? l2)) #f)
(else
(and (equal2?? (car l1) (car l2))
(equal2?? (cdr l1) (cdr l2)))))))
; Tests of eqlist3?
;
(eqlist3?
'(strawberry ice cream)
'(strawberry ice cream)) ; #t
(eqlist3?
'(strawberry ice cream)
'(strawberry cream ice)) ; #f
(eqlist3?
'(banan ((split)))
'((banana) split)) ; #f
(eqlist3?
'(beef ((sausage)) (and (soda)))
'(beef ((salami)) (and (soda)))) ; #f
(eqlist3?
'(beef ((sausage)) (and (soda)))
'(beef ((sausage)) (and (soda)))) ; #t
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;
; The sixth commandment ;
; ;
; Simplify only after the function is correct. ;
; ;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; rember simplified, it now also works on s-expressions, not just atoms
;
(define rember
(lambda (s l)
(cond
((null? l) '())
((equal2?? (car l) s) (cdr l))
(else (cons (car l) (rember s (cdr l)))))))
; Example of rember
;
(rember
'(foo (bar (baz)))
'(apples (foo (bar (baz))) oranges))
;==> '(apples oranges)
;
; Go get yourself this wonderful book and have fun with these examples!
;
; Shortened URL to the book at Amazon.com: http://bit.ly/4GjWdP
;
; Sincerely,
; Peteris Krumins
; http://www.catonmat.net
;
|
|