zh-大模型15期【VIP】
zh-大模型15期/
├──0-AI大模型第15期正课【视频课文件夹】
| ├──10. MCP与A2A的应用.mp4418.68M
| ├──11. Agent智能体系统的设计与应用.mp4395.90M
| ├──12. 视觉大模型与多模态理解.mp4407.50M
| ├──13. Fine-tuning 微调艺术.mp4313.89M
| ├──14. Fine-tuning 实操.mp4405.44M
| ├──15. Coze工作原理与应用实例.mp4363.31M
| ├──16. Coze插件开发实战.mp4363.64M
| ├──17. Dify本地化部署和应用.mp4377.14M
| ├──18. 分析式AI基础.mp4354.30M
| ├──19. 不同领域的AI算法.mp4352.16M
| ├──1、AI大模型基本原理及API应用.mp4367.00M
| ├──20. 机器学习神器.mp4317.21M
| ├──21. 时间序列模型.mp4350.69M
| ├──22. 时间序列大赛.mp4410.70M
| ├──23. 神经网络基础与Tensorflow实战.mp4347.59M
| ├──24. Pytorch与视觉检测.mp4382.13M
| ├──25. 项目实战:企业知识库 (企业RAG大赛冠军项目).mp4486.81M
| ├──26. 项目实战:交互式BI报表 (AI量化交易助手).mp4483.49M
| ├──27. 项目实战:AI智慧运营助手(百万客群经营).mp4493.46M
| ├──28. 项目实战:AI搜索类应用 (知乎直答).mp4570.67M
| ├──2、DeepSeek使用与prompt工程.mp4333.99M
| ├──3、Cursor编程-从入门到精通.mp4396.43M
| ├──4、Embeddings和向量数据库.mp4351.70M
| ├──5、RAG技术与应用.mp4380.17M
| ├──6.RAG的高级技巧.mp4380.17M
| ├──6、RAG的高级技巧.mp4389.58M
| ├──7. Text2SQL:自助式数据报表开发.mp4389.58M
| ├──8. LangChain:多任务应用开发.mp4414.36M
| └──9. Function Calling与智能Agent开发.mp4380.39M
├──1-AI大模型原理与API使用
| ├──CASE-API使用
| | ├──.cursorindexingignore0.11kb
| | ├──1-情感分析-Qwen.ipynb1.82kb
| | ├──1-情感分析-Qwen.py0.86kb
| | ├──2-天气Function-Qwen.ipynb7.43kb
| | ├──2-天气Function-Qwen.py3.55kb
| | ├──3-表格提取-Qwen.ipynb5.34kb
| | ├──3-表格提取-Qwen.py0.84kb
| | ├──4-运维事件处置-Qwen.ipynb6.79kb
| | ├──4-运维事件处置-Qwen.py3.31kb
| | ├──5-情感分析-Deepseek-阿里代理.ipynb1.79kb
| | ├──5-情感分析-Deepseek-阿里代理.py0.77kb
| | ├──6-联网搜索.ipynb2.36kb
| | └──6-联网搜索.py0.88kb
| ├──1-AI大模型原理与API使用.pdf3.15M
| ├──笔记20250721.txt0.52kb
| └──课前注册API KEY.txt0.20kb
├──10-MCP与A2A的应用
| ├──CASE-A2A使用
| | ├──BasketBallAgent.py2.01kb
| | ├──requirements.txt0.07kb
| | └──WeatherAgent.py1.79kb
| ├──CASE-MCP Demo-1
| | ├──.specstory
| | ├──.cursorindexingignore0.11kb
| | ├──.gitignore0.01kb
| | ├──assistant_mcp_amap_bot.py6.30kb
| | ├──assistant_mcp_txt_bot.py6.21kb
| | ├──requirements.txt0.05kb
| | ├──txt_counter.py2.02kb
| | └──旅行规划.md4.60kb
| ├──CASE-MCP Demo-2
| | ├──.specstory
| | ├──.cursorindexingignore0.11kb
| | ├──assistant_bot.py6.21kb
| | └──requirements.txt0.04kb
| ├──1-MCP与A2A的应用.pdf5.69M
| └──笔记20250820.txt5.82kb
├──11-Agent智能体系统的设计与应用
| ├──CASE-私募基金运作指引问答助手(反应式)
| | └──fund_qa_langgraph.py13.80kb
| ├──CASE-投顾AI助手(混合式)
| | └──hybrid_wealth_advisor_langgraph.py22.90kb
| ├──CASE-智能投研助手(深思熟虑)
| | └──deliberative_research_langgraph.py18.42kb
| ├──1-Agent智能体系统的设计与应用.pdf2.79M
| └──笔记20250823.txt6.58kb
├──12-视觉大模型与多模态理解
| ├──CASE-MinerU使用
| | ├──.ipynb_checkpoints
| | ├──modelscope_models
| | ├──output
| | ├──temp
| | ├──1-MinerU.ipynb3.06kb
| | ├──download_models.py2.44kb
| | ├──download_models_hf.py2.40kb
| | ├──markdown.md51.77kb
| | ├──Qwen3-tech_report.pdf6.09M
| | └──三国演义.pdf3.75M
| ├──CASE-VLM在车险中的应用
| | ├──.ipynb_checkpoints
| | ├──1-Qwen-VL-保险识别-cn.ipynb23.78kb
| | ├──1-vehicle-odometer-reading.jpg22.40kb
| | ├──10-extraction-of-auto-accident-elements.jpg120.51kb
| | ├──11-vehicle-identity-verification-1.jpg47.79kb
| | ├──11-vehicle-identity-verification-2.jpg51.02kb
| | ├──12-vehicle-identity-verification-1.jpg60.98kb
| | ├──12-vehicle-identity-verification-2.jpg81.03kb
| | ├──2-Qwen-VL-chat1.ipynb865.74kb
| | ├──2-vehicle-odometer-reading.jpg86.14kb
| | ├──3-vehicle-underwriting-1.jpg38.94kb
| | ├──3-vehicle-underwriting-2.jpg44.99kb
| | ├──3-vehicle-underwriting-3.jpg46.13kb
| | ├──3-vehicle-underwriting-4.jpg41.67kb
| | ├──3-vehicle-underwriting-5.jpg32.84kb
| | ├──4-Dangerous-driving-behavior-detection.jpg43.33kb
| | ├──5-Dangerous-driving-behavior-detection.jpg29.72kb
| | ├──6-Dangerous-driving-behavior-detection-1.jpg19.83kb
| | ├──6-Dangerous-driving-behavior-detection-2.jpg20.10kb
| | ├──6-Dangerous-driving-behavior-detection-3.jpg19.42kb
| | ├──6-Dangerous-driving-behavior-detection-4.jpg21.20kb
| | ├──6-Dangerous-driving-behavior-detection-5.jpg23.60kb
| | ├──7-vehicle-damage-evaluation.jpg68.60kb
| | ├──8-vehicle-damage-evaluation.jpg42.22kb
| | ├──9-extraction-of-auto-accident-elements.jpg74.18kb
| | ├──prompt_template_cn.xlsx9.87kb
| | ├──prompt_template_cn_result-20250430.xlsx17.67kb
| | ├──prompt_template_cn_result.xlsx13.54kb
| | ├──prompt_template_en.xlsx9.73kb
| | └──prompt_template_en_result.xlsx9.79kb
| ├──CASE-VLM在寿险中的应用
| | ├──.ipynb_checkpoints
| | ├──1-Chinese-document-extraction.jpg80.99kb
| | ├──1-Qwen-VL-保险识别-cn.ipynb11.01kb
| | ├──2-Japanese-document-extraction.jpg173.05kb
| | ├──2-Qwen-VL-本地图片.ipynb4.08kb
| | ├──3-French-document-extraction.jpg202.74kb
| | ├──4-German-document-extraction.jpg142.75kb
| | ├──5-Korean-document-extraction.jpg117.13kb
| | ├──prompt_template_cn.xlsx9.10kb
| | └──prompt_template_cn_result.xlsx7.88kb
| ├──CASE-汽车剐蹭视频理解
| | ├──car.mp45.77M
| | ├──requirements.txt0.10kb
| | ├──video-understand.ipynb18.61kb
| | └──video-understand.py9.71kb
| ├──笔记20250827.txt2.76kb
| └──视觉大模型与多模态理解.pdf6.66M
├──13-Fine-tuning微调艺术
| ├──image_svd
| | ├──256.bmp1.48M
| | └──image_svd.py0.88kb
| ├──MovieLens
| | ├──ALS.py14.63kb
| | ├──ratings_small.csv2.33M
| | └──ratings_small2.csv2.13M
| ├──1-Fine-tuning微调艺术.pdf1.31M
| └──笔记20250830.txt2.89kb
├──14-Fine-tuning实操
| ├──images
| | ├──1-vehicle-odometer-reading.jpg22.40kb
| | └──2-vehicle-odometer-reading.jpg86.14kb
| ├──【数据集】alpaca-cleaned
| | ├──alpaca_data_cleaned.json42.25M
| | ├──gitattributes2.27kb
| | └──README.md11.34kb
| ├──【数据集】gsm8k
| | ├──main
| | ├──socratic
| | ├──gitattributes1.57kb
| | ├──gsm8k.zip4.89M
| | └──README.md7.75kb
| ├──【数据集】中文医疗数据
| | ├──Andriatria_男科
| | ├──IM_内科
| | ├──OAGD_妇产科
| | ├──Oncology_肿瘤科
| | ├──Pediatric_儿科
| | └──Surgical_外科
| ├──1-Fine-tuning实操.pdf2.59M
| ├──qwen-vl-train.xlsx9.89kb
| ├──Qwen2_5_(7B)_Alpaca-2.ipynb169.72kb
| ├──Qwen2_5_(7B)_Alpaca-2.py12.53kb
| ├──Qwen2_5_(7B)_R1.ipynb528.96kb
| ├──Qwen2_5_(7B)_R1.py8.67kb
| ├──Qwen2_5_(7B)_模型调用.ipynb53.01kb
| ├──Qwen2_5_(7B)_医疗微调.ipynb685.16kb
| ├──Qwen2_5_(7B)_医疗微调.py11.46kb
| ├──qwen_vl_car_insurance_train.ipynb37.59kb
| ├──qwen_vl_car_insurance_train.py8.33kb
| ├──requirements.txt0.23kb
| └──笔记20250903.txt2.82kb
├──15-Coze工作原理与应用实例
| ├──CASE:创建产品知识库
| | ├──大模型定价.xlsx8.75kb
| | ├──浦发上海浦东发展银行西安分行个金客户经理考核办法.pdf368.62kb
| | └──远程办公场景最佳实践.docx469.57kb
| └──1-Coze工作原理与应用实例.pdf5.83M
├──15-Coze工作原理与应用实例(1)
| ├──CASE:创建产品知识库
| | ├──大模型定价.xlsx8.75kb
| | ├──浦发上海浦东发展银行西安分行个金客户经理考核办法.pdf368.62kb
| | └──远程办公场景最佳实践.docx469.57kb
| ├──1-Coze工作原理与应用实例.pdf5.96M
| └──笔记20250906.txt2.08kb
├──16-Agent进阶实战与插件开发
| ├──CASE-客户分层营销助手
| | ├──user_behavior_event.xlsx9.96kb
| | ├──user_tag.xlsx9.19kb
| | └──营销策略.xlsx12.64kb
| ├──CASE-市场舆情监测Agent
| | ├──AppStorePast-代码1.py0.48kb
| | ├──AppStorePast.py1.05kb
| | ├──securities_past.py2.58kb
| | ├──代码.js1.22kb
| | └──代码1.py0.34kb
| ├──CASE-智能客服Agent
| | ├──user_complain.xlsx8.92kb
| | ├──港股交易规则介绍.pdf954.16kb
| | ├──平安财富日添利理财产品.doc30.00kb
| | ├──上海证券交易所交易规则.pdf378.09kb
| | └──中国平安金裕人生理财产品.doc61.00kb
| ├──ABC公司证券产品介绍.txt6.66kb
| ├──Agent进阶实战与插件开发.pdf6.41M
| ├──Workflow-AppStoreEstimate-draft-4824.zip5.60kb
| ├──Workflow-GenerateDailyReports-draft-4867.zip4.26kb
| ├──Workflow-Securities-draft-5188.zip6.45kb
| └──笔记20250910.txt5.73kb
├──17-Dify本地化部署和应用
| ├──CASE-Coze API使用
| | ├──__pycache__
| | ├──config.py0.40kb
| | ├──coze_client.py9.10kb
| | └──requirements.txt0.04kb
| ├──CASE-Dify API使用
| | ├──__pycache__
| | ├──dify_agent_client.py19.92kb
| | ├──dify_workflow_example.py0.93kb
| | └──requirements.txt0.04kb
| ├──CASE-智能客服ChatFlow
| | ├──user_behavior_event.xlsx9.96kb
| | ├──user_tag.xlsx9.19kb
| | ├──港股交易规则介绍.pdf954.16kb
| | ├──平安财富日添利理财产品.doc30.00kb
| | ├──上海证券交易所交易规则.pdf378.09kb
| | └──中国平安金裕人生理财产品.doc61.00kb
| ├──CASE-智能文档分析助手
| | └──INTERNVIDEO2.5.pdf1.84M
| ├──1-Dify部署与应用.pdf4.18M
| └──笔记20250913.txt8.84kb
├──18-分析式AI基础
| ├──Case-二手车价格预测
| | ├──used_car_sample_submit.csv439.47kb
| | ├──used_car_testB_20200421.csv17.06M
| | └──used_car_train_20200313.csv51.77M
| ├──【完成参考】Case-二手车价格预测
| | ├──catboost_info
| | ├──processed_data
| | ├──temp
| | ├──.gitignore0.01kb
| | ├──brand_distribution.png19.15kb
| | ├──catboost_feature_importance.csv0.98kb
| | ├──catboost_feature_importance.png28.69kb
| | ├──catboost_prediction_vs_actual.png79.54kb
| | ├──catboost_submit_result.csv1.26M
| | ├──correlation_heatmap.png454.95kb
| | ├──data_preprocessing.py8.03kb
| | ├──ensemble_analysis.png74.16kb
| | ├──feature_engineering_and_catboost.py14.02kb
| | ├──feature_importance.csv0.85kb
| | ├──feature_importance.png28.14kb
| | ├──fe_catboost_feature_importance.csv2.25kb
| | ├──fe_catboost_feature_importance.png36.91kb
| | ├──fe_catboost_prediction_vs_actual.png80.20kb
| | ├──fe_catboost_submit_result.csv1.26M
| | ├──lightgbm_feature_importance.png29.07kb
| | ├──lightgbm_prediction_vs_actual.png80.01kb
| | ├──lightgbm_submit_result.csv1.26M
| | ├──model_ensemble.py3.74kb
| | ├──prediction_vs_actual.png78.76kb
| | ├──predict_catboost.py6.14kb
| | ├──price_distribution.png17.99kb
| | ├──price_vs_kilometer.png72.02kb
| | ├──price_vs_power.png47.34kb
| | ├──price_vs_v_0.png112.22kb
| | ├──price_vs_v_1.png140.78kb
| | ├──price_vs_v_2.png83.39kb
| | ├──submit_result-xgboost.csv861.07kb
| | ├──submit_result.csv1.26M
| | ├──train_catboost.py4.99kb
| | ├──train_lightgbm.py5.31kb
| | ├──train_xgboost.py4.65kb
| | ├──used_car_sample_submit.csv439.47kb
| | ├──used_car_testB_20200421.csv17.06M
| | ├──used_car_train_20200313.csv51.77M
| | ├──view_data.py4.29kb
| | └──特征工程.md3.51kb
| ├──1-分析式AI基础.pdf2.43M
| └──笔记20250917.txt4.87kb
├──19-不同领域的AI算法
| ├──【完成参考】Case-二手车价格预测
| | ├──.ipynb_checkpoints
| | ├──.specstory
| | ├──catboost_info
| | ├──processed_data
| | ├──.cursorindexingignore0.11kb
| | ├──catboost_pred.py1.21kb
| | ├──catboost_submit_result.csv1.26M
| | ├──eda_used_car.ipynb13.39kb
| | ├──eda_used_car.py2.56kb
| | ├──ensemble_submit.py0.97kb
| | ├──feature_engineering_and_catboost.ipynb104.33kb
| | ├──feature_engineering_and_catboost.md5.60kb
| | ├──feature_engineering_and_catboost.py13.44kb
| | ├──fe_catboost_feature_importance.csv1.87kb
| | ├──fe_catboost_feature_importance.png34.75kb
| | ├──fe_catboost_prediction_vs_actual.png70.12kb
| | ├──fe_catboost_submit_result.csv1.26M
| | ├──pickle_save.py1.58kb
| | ├──used_car_sample_submit.csv439.47kb
| | ├──used_car_testB_20200421.csv17.06M
| | ├──used_car_train_20200313.csv51.77M
| | └──xgboost_pred.py2.66kb
| ├──1-不同领域的AI算法.pdf3.09M
| └──笔记20250920.txt5.58kb
├──2-DeepSeek使用与Prompt工程
| ├──ball
| | └──index.html6.35kb
| ├──1-DeepSeek使用与提示词工程.pdf4.43M
| ├──1-情感分析-Deepseek-阿里代理.ipynb2.34kb
| ├──1-情感分析-Deepseek-阿里代理.py1.08kb
| ├──2-提示词工程使用.ipynb11.84kb
| ├──2-提示词工程使用.py3.70kb
| ├──3-deepseek-r1-7b使用.ipynb6.62kb
| ├──3-deepseek-r1-7b使用.py0.97kb
| ├──4-model-download.ipynb0.78kb
| ├──5-ollama使用.py0.55kb
| ├──6-ollama-stream.py1.54kb
| ├──7-ollama-fastapi-python客户端.py0.16kb
| ├──7-ollama-fastapi.py0.97kb
| ├──requirements.txt0.04kb
| └──笔记20250724.txt5.00kb
├──20-机器学习神器
| ├──Attrition
| | ├──catboost_info
| | ├──attrition.csv183.15kb
| | ├──attrition_cart.py2.98kb
| | ├──attrition_catboost.py2.25kb
| | ├──attrition_gbdt.py1.57kb
| | ├──attrition_lgb.py2.76kb
| | ├──attrition_lgb_onehot.py2.23kb
| | ├──attrition_lr.py3.10kb
| | ├──attrition_lr_threshold.py2.32kb
| | ├──attrition_ngboost.py1.64kb
| | ├──attrition_svc.py2.74kb
| | ├──attrition_xgboost.py2.12kb
| | ├──submit_cb.csv2.10kb
| | ├──submit_gbdt.csv7.29kb
| | ├──submit_lgb.csv2.10kb
| | ├──submit_lr.csv7.18kb
| | ├──submit_lr_threshold.csv2.10kb
| | ├──submit_ngb.csv2.10kb
| | ├──submit_svc.csv2.10kb
| | ├──submit_xgb.csv4.62kb
| | ├──test.csv45.18kb
| | ├──train.csv183.15kb
| | └──train_label_encoder.csv97.84kb
| ├──voice
| | ├──voice.csv1.02M
| | ├──voice_predict.ipynb107.84kb
| | └──voice_predict.py2.90kb
| ├──1-机器学习神器.pdf1.74M
| └──笔记20250924.txt4.18kb
├──21-时间序列模型
| ├──CASE-资金流入流出预测
| | ├──comp_predict_table.csv0.08kb
| | ├──mfd_bank_shibor.csv19.06kb
| | ├──mfd_day_share_interest.csv9.53kb
| | ├──user_balance_table.csv150.45M
| | └──user_profile_table.csv728.55kb
| ├──sales_prediction
| | ├──.ipynb_checkpoints
| | ├──predict1.ipynb37.35kb
| | ├──sales.csv0.64kb
| | └──sales_prediction.py2.99kb
| ├──stock
| | ├──1-stock_tsa.ipynb87.40kb
| | ├──1-stock_tsa.py0.73kb
| | ├──2-arma-demo.ipynb179.94kb
| | ├──2-arma_demo.py1.36kb
| | ├──3-stock_arma.ipynb289.04kb
| | ├──4-stock_arima.ipynb164.45kb
| | ├──4-stock_arima.py2.99kb
| | ├──5-stock_prophet.ipynb160.24kb
| | ├──688692_SH_close_price.png58.81kb
| | ├──688692_SH_daily_data.csv16.93kb
| | ├──688692_SH_full_prediction.png69.79kb
| | ├──688692_SH_model_fit_seasonal.png100.82kb
| | ├──688692_SH_prediction_seasonal.png56.80kb
| | ├──688692_SH_prediction_seasonal_results.csv0.59kb
| | ├──download_688692SH.py2.44kb
| | ├──download_688692SH_alt.py3.70kb
| | ├──predict_688692SH.py5.90kb
| | ├──predict_688692SH_prophet.py6.22kb
| | ├──predict_688692SH_seasonal.py6.78kb
| | ├──README.md2.20kb
| | ├──run_all_predictions.py7.66kb
| | ├──shanghai_index_1990_12_19_to_2020_03_12.csv270.06kb
| | ├──stock_arima.py3.08kb
| | ├──stock_arma.py3.16kb
| | ├──stock_lstm.py4.25kb
| | ├──stock_prophet.py1.06kb
| | └──stock_tsa.py0.65kb
| ├──1-时间序列分析.pdf1.96M
| └──笔记20250927.txt6.15kb
├──22-时间序列AI大赛
| ├──CASE-资金流入流出预测
| | ├──.specstory
| | ├──comp_predict_table.csv0.08kb
| | ├──mfd_bank_shibor.csv19.06kb
| | ├──mfd_day_share_interest.csv9.53kb
| | ├──periodic_factor_decompose_forecast_201409.csv1.09kb
| | ├──periodic_factor_decompose_predict.py3.26kb
| | ├──periodic_factor_forecast_201409.csv1.06kb
| | ├──periodic_factor_predict.py2.17kb
| | ├──periodic_forecast_201409.csv1.06kb
| | ├──periodic_model.py2.79kb
| | ├──periodic_model_explanation.md2.64kb
| | ├──predict.py3.59kb
| | ├──user_balance_table.csv150.45M
| | ├──user_profile_table.csv728.55kb
| | └──weekday_analysis.py2.87kb
| ├──jetrail
| | ├──.specstory
| | ├──daily_passenger_forecast.png146.16kb
| | ├──daily_passenger_forecast.py2.49kb
| | ├──daily_passenger_forecast_components.png87.79kb
| | ├──manning_prophet.py3.44kb
| | ├──read_data.py0.11kb
| | └──train.csv477.59kb
| ├──manning
| | ├──.ipynb_checkpoints
| | ├──manning.csv84.81kb
| | ├──manning_prophet.ipynb1.18M
| | ├──manning_prophet.py3.44kb
| | ├──突变点检测.ipynb165.16kb
| | └──突变点检测.py1.93kb
| ├──stock
| | ├──.ipynb_checkpoints
| | ├──.specstory
| | ├──.cursorindexingignore0.11kb
| | ├──arma_demo.py1.26kb
| | ├──shanghai_index_1990_12_19_to_2020_03_12.csv270.06kb
| | ├──stock_arima.py3.08kb
| | ├──stock_arma.py3.16kb
| | ├──stock_lstm.py4.25kb
| | ├──stock_prophet.ipynb243.75kb
| | ├──stock_prophet.py1.01kb
| | └──stock_tsa.py0.65kb
| ├──笔记20250928.txt4.04kb
| └──时间序列AI大赛.pdf1.61M
├──23-神经网络基础与Tensorflow实战
| ├──code
| | ├──activation_function
| | ├──housing.csv47.93kb
| | ├──numpy_boston.py2.28kb
| | ├──numpy_forward.py1.18kb
| | ├──numpy_model.py2.38kb
| | ├──pytorch_boston.py2.02kb
| | ├──tensorflow_boston.py1.69kb
| | └──tensorflow_boston_dataparallel.py1.89kb
| ├──1-神经网络基础与Tensorflow实战.pdf1.73M
| └──笔记20251004.txt1.91kb
├──24-pytorch与视觉检测
| ├──aistudio-baidu代码
| | ├──2531163.ipynb72.90kb
| | └──bug_detect.tar106.14M
| ├──CNN_cases
| | ├──.ipynb_checkpoints
| | ├──image_recognition
| | ├──cifar10_resnet.py2.99kb
| | ├──cnn_feature_map_demo.ipynb1.70kb
| | ├──cnn_feature_map_demo.py0.70kb
| | ├──cnn_viz.ipynb1.59M
| | ├──cnn_viz.py3.33kb
| | ├──gugong.jpg35.72kb
| | ├──mat_read.py0.89kb
| | ├──mnist_alexnet.py4.81kb
| | └──stanford_car_resnet.py3.58kb
| ├──labelImg-master
| | ├──build-tools
| | ├──data
| | ├──demo
| | ├──libs
| | ├──requirements
| | ├──resources
| | ├──tests
| | ├──__pycache__
| | ├──.gitignore0.24kb
| | ├──.travis.yml1.48kb
| | ├──combobox.py0.94kb
| | ├──CONTRIBUTING.rst0.08kb
| | ├──HISTORY.rst1.37kb
| | ├──issue_template.md0.14kb
| | ├──labelImg.py59.51kb
| | ├──LICENSE1.17kb
| | ├──Makefile0.51kb
| | ├──MANIFEST.in0.29kb
| | ├──README.rst9.50kb
| | ├──resources.py592.55kb
| | ├──resources.qrc1.88kb
| | ├──setup.cfg0.09kb
| | ├──setup.py3.44kb
| | └──__init__.py
| ├──yolo-case
| | ├──.ipynb_checkpoints
| | ├──.specstory
| | ├──runs
| | ├──steel-data
| | ├──1-yolo-predict.ipynb639.07kb
| | ├──2-yolo-train.ipynb1.28M
| | ├──3-yolo-steel.ipynb104.09kb
| | ├──4-yolo-steel-predict.ipynb103.03kb
| | ├──coco-2.yaml2.69kb
| | ├──coco.yaml2.72kb
| | ├──convert_annotations.py4.61kb
| | ├──submission.csv33.79kb
| | ├──yolov12.yaml1.92kb
| | └──yolov12n.pt5.26M
| ├──1-Pytorch与视觉检测.pdf8.29M
| └──笔记20251008.txt3.96kb
├──25-项目实战:企业知识库
| ├──RAG-Challenge-2-main
| | ├──.ipynb_checkpoints
| | ├──.specstory
| | ├──data
| | ├──docs
| | ├──src
| | ├──.cursorindexingignore0.11kb
| | ├──.gitignore3.25kb
| | ├──1-情感分析-Qwen.py0.75kb
| | ├──dashscope-embedding-1.py0.69kb
| | ├──env0.26kb
| | ├──LICENSE1.04kb
| | ├──main.py2.46kb
| | ├──README.md3.50kb
| | ├──requirements.txt0.49kb
| | ├──setup.py0.10kb
| | └──运行情况.txt26.01kb
| ├──RAG-cy
| | ├──.ipynb_checkpoints
| | ├──.specstory
| | ├──data
| | ├──docs
| | ├──src
| | ├──.cursorindexingignore0.11kb
| | ├──.gitignore3.25kb
| | ├──1-情感分析-Qwen.py0.75kb
| | ├──dashscope-embedding-1.py0.69kb
| | ├──env0.26kb
| | ├──LICENSE1.04kb
| | ├──main.py2.46kb
| | ├──README.md3.50kb
| | ├──requirements.txt0.49kb
| | ├──setup.py0.10kb
| | ├──UI界面参考.png173.56kb
| | └──运行情况.txt16.86kb
| ├──1-项目实战:企业知识库.pdf2.82M
| └──笔记20251011.txt13.75kb
├──26-项目实战:交互式BI报表
| ├──CASE-ChatBI助手
| | └──说明.txt0.08kb
| ├──【完成参考】CASE-ChatBI助手
| | ├──.specstory
| | ├──image_show
| | ├──workspace
| | ├──.cursorindexingignore0.11kb
| | ├──assistant_ticket_bot-3.py8.59kb
| | ├──faq.txt0.79kb
| | ├──requirements.txt0.05kb
| | ├──stock_data.py2.04kb
| | ├──stock_history_data.sql1.02kb
| | ├──stock_history_data.xlsx270.63kb
| | ├──stock_query_assistant-2.py8.64kb
| | ├──stock_query_assistant-3.py12.77kb
| | ├──stock_query_assistant-4.py17.87kb
| | ├──stock_query_assistant-5.py19.56kb
| | └──stock_query_assistant.py7.77kb
| ├──1-项目实战:交互式BI报表.pdf7.05M
| └──笔记20251015.txt5.84kb
├──27-项目实战:AI运营助手
| ├──BreadBasket
| | ├──apriori_breadbasket.py2.10kb
| | └──BreadBasket_DMS.csv671.85kb
| ├──CASE-百万客群经营
| | ├──create_sql.sql3.41kb
| | ├──customer_base.csv1.61M
| | ├──customer_behavior_assets.csv24.59M
| | └──项目说明.txt0.69kb
| ├──【完成参考】CASE-百万客群经营
| | ├──image_show
| | ├──static
| | ├──templates
| | ├──workspace
| | ├──1-情感分析-Qwen.py0.77kb
| | ├──apriori_product_combination.py1.67kb
| | ├──arima_asset_trend.py3.22kb
| | ├──aum_forecast.png82.12kb
| | ├──aum_history.png77.75kb
| | ├──bank_customer_assistant.py12.26kb
| | ├──clustering_customer_segmentation.py2.58kb
| | ├──coefficient_bar.png42.94kb
| | ├──customer_base.csv1.85M
| | ├──customer_behavior_assets.csv29.14M
| | ├──customer_clusters.png96.71kb
| | ├──customer_cluster_result.csv74.67kb
| | ├──dashboard_app.py5.00kb
| | ├──decision_tree_high_value.py2.90kb
| | ├──frequent_product_itemsets.csv0.80kb
| | ├──lgbm_feature_importance.png31.87kb
| | ├──lgbm_high_value_model.txt122.61kb
| | ├──LightGBM-SHAP解释.md2.40kb
| | ├──lightgbm_high_value.py3.22kb
| | ├──lightgbm_high_value_predict.py1.51kb
| | ├──LightGBM解释.md1.96kb
| | ├──logistic_regression_high_value.py3.75kb
| | ├──product_association_rules.csv5.40kb
| | ├──read_data.py0.60kb
| | ├──shap_force_plot.png65.83kb
| | ├──shap_lightgbm_high_value.py3.30kb
| | ├──shap_summary_plot.png68.87kb
| | ├──simulated_customers.xlsx8.31kb
| | ├──simulated_customers_explain.py2.16kb
| | ├──simulated_customers_with_explain.xlsx9.34kb
| | ├──simulate_customers_and_predict.py2.55kb
| | ├──tree_depth4.png203.32kb
| | ├──决策树解释.md1.82kb
| | ├──客户话术.xlsx5.60kb
| | ├──客户话术生成.py0.86kb
| | ├──客户数据库建表.sql2.88kb
| | ├──课题说明.md2.29kb
| | ├──逻辑回归解释.md2.42kb
| | ├──数据表字段含义.md3.96kb
| | └──智能助手问题集.md3.20kb
| ├──笔记20251018.txt12.15kb
| ├──挖掘数据中的关联关系.pdf1.30M
| └──项目实战:AI运营助手.pdf9.28M
├──28-项目实战:AI搜索类应用
| ├──CASE-AI搜索问答
| | ├──docs
| | ├──__pycache__
| | ├──ai_bot-1.py6.66kb
| | ├──block_api_demo1.py0.42kb
| | ├──logo.png4.23kb
| | └──知乎直答.png398.64kb
| ├──CASE-Qwen-Agent最佳实践
| | ├──.specstory
| | ├──workspace
| | ├──.cursorindexingignore0.11kb
| | ├──1-long_dialogue.py1.04kb
| | ├──2-parallel_doc_qa.py1.26kb
| | ├──3-gpt_mentions.py1.47kb
| | └──4-multi_agent_router_cn.py3.01kb
| ├──【完成参考】CASE-AI搜索问答
| | ├──docs
| | ├──qwen_agent
| | ├──static
| | ├──__pycache__
| | ├──.cursorindexingignore0.11kb
| | ├──ai_bot-1.py6.66kb
| | ├──ai_bot-2.py6.85kb
| | ├──ai_bot-3.py2.69kb
| | ├──ai_bot-4.py3.33kb
| | ├──ai_bot-5.py8.75kb
| | ├──ai_bot-6.py7.56kb
| | ├──ai_bot-7.py7.33kb
| | ├──ai_bot-8.py7.82kb
| | ├──ai_bot-9.py8.24kb
| | ├──block_api_demo1.py0.42kb
| | ├──es_retrieval_tool.py8.44kb
| | ├──index_and_search_docs-embedding.py6.72kb
| | ├──index_and_search_docs.py4.79kb
| | ├──qwen-agent-multi-files-gui.py6.66kb
| | ├──qwen-agent-multi-files.py3.84kb
| | ├──qwen3-embedding.py0.66kb
| | ├──simple_es_test.py3.97kb
| | ├──stock_query_assistant-3.py14.84kb
| | ├──test_es_retrieval.py3.18kb
| | ├──test_es_single_file.py8.72kb
| | └──知乎直答.png398.64kb
| └──1-项目实战:AI搜索类应用.pdf7.91M
├──3-Cursor编程-从入门到精通
| ├──CASE-bed_usage
| | └──hospital_bed_usage_data.xlsx3.07M
| ├──CASE-dashboard_epidemic
| | └──香港各区疫情数据_20250322.xlsx220.66kb
| ├──CASE-Excel_merge
| | ├──员工基本信息表.xlsx9.48kb
| | └──员工绩效表.xlsx6.69kb
| ├──【完成参考】bed_usage
| | ├──.qodo
| | ├──charts
| | ├──data_cache
| | ├──templates
| | ├──.gitignore0.01kb
| | ├──app.py20.70kb
| | ├──hospital_bed_usage_data.xlsx3.07M
| | ├──precompute_data.py8.07kb
| | ├──README.md1.45kb
| | ├──requirements.txt0.06kb
| | └──view_excel_data.py7.18kb
| ├──【完成参考】dashboard_epidemic
| | ├──static
| | ├──templates
| | ├──.gitignore0.01kb
| | ├──app.py7.53kb
| | ├──README.md1.70kb
| | ├──read_excel.py7.98kb
| | ├──requirements.txt0.06kb
| | ├──各地区确诊病例对比图.png264.18kb
| | ├──活跃病例数据统计图.png202.23kb
| | ├──每日确诊数据统计图.png349.87kb
| | ├──香港各区疫情数据_20250322.xlsx183.64kb
| | ├──疫情数据统计图 - 副本.png179.12kb
| | └──疫情数据统计图.png179.12kb
| ├──【完成参考】Excel_merge
| | ├──.qodo
| | ├──.gitignore0.01kb
| | ├──test1.py1.25kb
| | ├──员工基本信息表.xlsx9.48kb
| | ├──员工绩效表.xlsx6.69kb
| | └──员工信息与绩效合并表.xlsx6.26kb
| ├──1-Cursor编程.pdf3.91M
| ├──2-Trae与CodeBuddy.pdf1.63M
| ├──3-Claude 4.pdf307.66kb
| ├──【补充】CASE-病床使用情况.pdf1.83M
| ├──【课前准备】AI编程工具安装.pdf136.31kb
| └──笔记20250727.txt6.86kb
├──4-Embeddings和向量数据库
| ├──Case-ChatPDF-Faiss
| | ├──.ipynb_checkpoints
| | ├──.qodo
| | ├──chatpdf-faiss.ipynb18.05kb
| | ├──chatpdf-faiss.py3.90kb
| | └──浦发上海浦东发展银行西安分行个金客户经理考核办法.pdf323.28kb
| ├──CASE-向量数据库
| | ├──1-embedding计算.py0.57kb
| | └──2-embedding-faiss-元数据.py4.98kb
| ├──hotel_recommendation
| | ├──hotel_rec.ipynb142.59kb
| | ├──hotel_rec.py5.55kb
| | ├──requirements.txt0.08kb
| | └──Seattle_Hotels.csv155.59kb
| ├──word2vec
| | ├──.ipynb_checkpoints
| | ├──journey_to_the_west
| | ├──models
| | ├──three_kingdoms
| | ├──utils
| | ├──requirements.txt0.08kb
| | ├──word_seg.py1.11kb
| | └──word_similarity.py1.14kb
| ├──1-Embedding与向量数据库.pdf1.60M
| └──笔记20250730.txt1.42kb
├──5-RAG技术与应用
| ├──CASE-ChatPDF-Faiss
| | ├──.ipynb_checkpoints
| | ├──faiss-1
| | ├──vector_db
| | ├──chatpdf-faiss.ipynb22.07kb
| | ├──chatpdf-faiss.py7.43kb
| | └──浦发上海浦东发展银行西安分行个金客户经理考核办法.pdf323.28kb
| ├──CASE-embedding使用
| | ├──bge-m3使用.ipynb15.85kb
| | ├──bge-m3使用.py1.16kb
| | ├──gte-qwen2-使用1.ipynb12.10kb
| | ├──gte-qwen2-使用1.py1.45kb
| | ├──gte-qwen2-使用2.ipynb3.92kb
| | └──gte-qwen2-使用2.py4.66kb
| ├──CASE-迪士尼RAG助手
| | ├──disney_knowledge_base
| | ├──迪士尼RAG知识库
| | ├──1-disney_bot.ipynb26.97kb
| | ├──1-disney_bot.py13.53kb
| | ├──1-固定长度切片.ipynb6.19kb
| | ├──1-固定长度切片.py3.07kb
| | ├──2-万圣节.jpeg73.42kb
| | ├──2-语义切片.ipynb6.07kb
| | ├──2-语义切片.py3.16kb
| | ├──3-LLM语义切片.ipynb6.21kb
| | ├──3-LLM语义切片.py4.78kb
| | ├──4-层次切片.ipynb10.51kb
| | ├──4-层次切片.py5.74kb
| | ├──5-滑动窗口切片.ipynb6.11kb
| | ├──5-滑动窗口切片.py2.66kb
| | ├──6-Qwen-VL图像理解.ipynb2.80kb
| | ├──6-Qwen-VL图像理解.py0.62kb
| | └──tesseract-ocr-w64-setup-5.5.0.20241111.exe20.39M
| ├──1-RAG技术与应用.pdf2.43M
| └──笔记20250802.txt7.67kb
├──6-RAG高级技术与最佳实践
| ├──Case-ChatPDF-Faiss
| | ├──.ipynb_checkpoints
| | ├──faiss-1
| | ├──vector_db
| | ├──.gitignore0.01kb
| | ├──chatpdf-faiss-MultiQueryRetriever.ipynb18.30kb
| | ├──chatpdf-faiss-MultiQueryRetriever.py9.49kb
| | ├──chatpdf-faiss.ipynb32.38kb
| | ├──chatpdf-faiss.py8.05kb
| | ├──MultiQueryRetriever使用.ipynb6.70kb
| | ├──MultiQueryRetriever使用.py1.31kb
| | ├──requirements.txt0.09kb
| | └──浦发上海浦东发展银行西安分行个金客户经理考核办法.pdf323.28kb
| ├──CASE-知识库处理
| | ├──1-知识库问题生成与检索优化-BM25.py21.18kb
| | ├──2-对话知识沉淀.py12.72kb
| | ├──3-知识库健康度检查.py15.73kb
| | └──4-知识库版本管理与性能比较.py20.71kb
| ├──CASEA-Query改写
| | ├──1-Query改写.py10.52kb
| | └──2-Query联网搜索改写.py9.18kb
| ├──graphrag-main
| | ├──cases
| | └──requirements.txt0.41kb
| ├──rerank
| | ├──beg-reranker.ipynb8.72kb
| | ├──beg-reranker.py1.21kb
| | ├──gte-qwen2-使用1.ipynb12.10kb
| | ├──gte-qwen2-使用1.py1.45kb
| | └──requirements.txt0.05kb
| ├──1-RAG高级技术与实践.pdf4.12M
| └──笔记20250806.txt6.29kb
├──7-Text2SQL:自助式数据报表开发
| ├──CASE-SQL Copilot
| | ├──.ipynb_checkpoints
| | ├──insurance
| | ├──codegeex-1.ipynb8.44kb
| | └──qwen-coder1.ipynb6.06kb
| ├──Case-SQL-LangChain
| | ├──.ipynb_checkpoints
| | ├──requirements.txt0.08kb
| | ├──sql_agent_deepseek.ipynb24.74kb
| | ├──sql_agent_deepseek.py1.63kb
| | ├──sql_life_insurance.ipynb23.21kb
| | └──sql_life_insurance.py1.48kb
| ├──CASE-SQL-vanna
| | ├──.ipynb_checkpoints
| | ├──6964cc59-7b4f-4f30-ab63-34301bf46276
| | ├──6e991d67-8a72-474d-b791-efc3f1d64649
| | ├──e5f6b279-ba5a-4c79-8c60-e4946424ecd0
| | ├──1-情感分析-Qwen.py0.82kb
| | ├──chroma.sqlite3496.00kb
| | ├──requirements.txt0.06kb
| | ├──vanna-mysql.ipynb33.17kb
| | └──vanna-mysql.py3.13kb
| ├──SQL数据表源文件
| | ├──agentinfo.sql235.42kb
| | ├──beneficiaryinfo.sql140.62kb
| | ├──claiminfo.sql271.36kb
| | ├──crs_orders.sql4.98kb
| | ├──customerinfo.sql266.22kb
| | ├──employeeinfo.sql303.85kb
| | ├──heros.sql14.66kb
| | ├──policyinfo.sql242.63kb
| | └──productinfo.sql201.10kb
| ├──1-Text2SQL:自助式数据报表开发.pdf3.08M
| ├──2-vanna使用.pdf479.21kb
| └──笔记20250809.txt8.43kb
├──8-LangChain:多任务应用开发
| ├──CASE-LangChain使用
| | ├──.ipynb_checkpoints
| | ├──1-LLMChain.ipynb3.44kb
| | ├──1-LLMChain.py0.80kb
| | ├──2-LLMChain.ipynb7.24kb
| | ├──2-LLMChain.py1.73kb
| | ├──3-LLMChain.ipynb9.06kb
| | ├──3-LLMChain.py1.87kb
| | ├──4-ConversationChain.ipynb4.35kb
| | ├──4-ConversationChain.py0.83kb
| | └──5-product_llm.py8.53kb
| ├──CASE-搭建故障诊断Agent
| | ├──2-network_diagnosis_agent.md2.80kb
| | ├──2-network_diagnosis_agent.py10.75kb
| | └──network_diagnosis_agent_logic.md5.46kb
| ├──CASE-工具链组合
| | ├──1-simple_toolchain.py9.25kb
| | ├──2-simple_toolchain.py7.96kb
| | └──3-lcel-demo.py1.22kb
| ├──1-LangChain:多任务应用开发.pdf3.04M
| └──笔记20250813.txt7.92kb
├──9-Function Calling与协作
| ├──CASE-Function Calling
| | ├──assistant_weather_bot-1.py6.38kb
| | ├──qwen3-function使用-2.py5.60kb
| | ├──qwen3-function使用.py2.86kb
| | └──requirements.txt0.11kb
| ├──CASE-ticket-agent
| | ├──workspace
| | ├──assistant_revenue_bot.py22.15kb
| | ├──assistant_ticket_bot-1.py6.74kb
| | ├──assistant_ticket_bot-2.py8.95kb
| | ├──assistant_ticket_bot-3.py9.80kb
| | └──requirements.txt0.15kb
| ├──Function Calling与协作.pdf2.08M
| └──笔记20250816.txt8.39kb
└──开营直播
| ├──0720学习路径与规划.pdf2.47M
| └──笔记20250720.txt0.22kb
自助式数据报表开发.pdf3.08M 强烈支持楼主ing…… [百度网盘] zh-大模型15期【VIP】 [复制链接] |主动推送
谢谢分享 333 666666666666666 我只是路过打酱油的。 1111111111111 强烈支持楼主ing……