Ling-w 发表于 2024-3-13 16:49

深度学习:高级计算机视觉教程(GAN、SSD等!)

Deep Learning Advanced Computer Vision (GANs, SSD, +More!)


深度学习:高级计算机视觉教程(英文外语教学)
├──1. Welcome
|   ├──1. Introduction39.mp47.77M
|   ├──1. Introduction39.srt5.05kb
|   ├──2. Outline and Perspective.mp47.45M
|   ├──2. Outline and Perspective.srt13.79kb
|   ├──3. Where to get the code.mp446.05M
|   ├──3. Where to get the code.srt19.59kb
|   ├──3.1 Colab Notebooks.html0.15kb
|   ├──3.2 Github Link.html0.12kb
|   ├──4. How to Succeed in this Course.mp43.30M
|   └──4. How to Succeed in this Course.srt6.11kb
├──10. GANs (Generative Adversarial Networks)
|   ├──1. GAN Theory.mp491.06M
|   ├──1. GAN Theory.srt31.94kb
|   ├──2. GAN Colab Notebook.html0.24kb
|   ├──3. GAN Code.mp482.29M
|   └──3. GAN Code.srt23.34kb
├──11. Object Localization Project
|   ├──1. Localization Introduction and Outline.mp462.90M
|   ├──1. Localization Introduction and Outline.srt28.09kb
|   ├──10. Localization Code (pt 4).mp413.32M
|   ├──10. Localization Code (pt 4).srt3.48kb
|   ├──11. Localization Code Outline (pt 5).mp443.07M
|   ├──11. Localization Code Outline (pt 5).srt16.84kb
|   ├──12. Localization Code (pt 5).mp459.85M
|   ├──12. Localization Code (pt 5).srt16.40kb
|   ├──13. Localization Code Outline (pt 6).mp433.57M
|   ├──13. Localization Code Outline (pt 6).srt14.82kb
|   ├──14. Localization Code (pt 6).mp456.68M
|   ├──14. Localization Code (pt 6).srt15.37kb
|   ├──15. Localization Code Outline (pt 7).mp420.61M
|   ├──15. Localization Code Outline (pt 7).srt10.04kb
|   ├──16. Localization Code (pt 7).mp477.18M
|   ├──16. Localization Code (pt 7).srt24.21kb
|   ├──2. Localization Code Outline (pt 1).mp441.29M
|   ├──2. Localization Code Outline (pt 1).srt22.08kb
|   ├──3. Object Localization Colab Notebooks.html0.77kb
|   ├──4. Localization Code (pt 1).mp453.81M
|   ├──4. Localization Code (pt 1).srt18.45kb
|   ├──5. Localization Code Outline (pt 2).mp418.71M
|   ├──5. Localization Code Outline (pt 2).srt9.74kb
|   ├──6. Localization Code (pt 2).mp458.60M
|   ├──6. Localization Code (pt 2).srt21.76kb
|   ├──7. Localization Code Outline (pt 3).mp412.33M
|   ├──7. Localization Code Outline (pt 3).srt6.78kb
|   ├──8. Localization Code (pt 3).mp430.06M
|   ├──8. Localization Code (pt 3).srt8.13kb
|   ├──9. Localization Code Outline (pt 4).mp413.66M
|   └──9. Localization Code Outline (pt 4).srt7.26kb
├──12. Keras and Tensorflow 2 Basics Review
|   ├──1. (Review) Tensorflow Basics.mp481.53M
|   ├──1. (Review) Tensorflow Basics.srt9.05kb
|   ├──2. (Review) Tensorflow Neural Network in Code.mp497.24M
|   ├──2. (Review) Tensorflow Neural Network in Code.srt8.49kb
|   ├──3. (Review) Keras Discussion.mp427.64M
|   ├──3. (Review) Keras Discussion.srt14.56kb
|   ├──4. (Review) Keras Neural Network in Code.mp466.16M
|   ├──4. (Review) Keras Neural Network in Code.srt11.48kb
|   ├──5. (Review) Keras Functional API.mp438.64M
|   ├──5. (Review) Keras Functional API.srt8.43kb
|   ├──6. (Review) How to easily convert Keras into Tensorflow 2.0 code.mp49.81M
|   └──6. (Review) How to easily convert Keras into Tensorflow 2.0 code.srt2.08kb
├──13. Setting Up Your Environment (FAQ by Student Request)
|   ├──1. Windows-Focused Environment Setup 2018.mp4186.32M
|   ├──1. Windows-Focused Environment Setup 2018.srt20.10kb
|   ├──2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp443.82M
|   └──2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt14.48kb
├──14. Extra Help With Python Coding for Beginners (FAQ by Student Request)
|   ├──1. How to Code by Yourself (part 1).mp424.53M
|   ├──1. How to Code by Yourself (part 1).srt22.75kb
|   ├──2. How to Code by Yourself (part 2).mp48.64M
|   ├──2. How to Code by Yourself (part 2).srt13.22kb
|   ├──3. Proof that using Jupyter Notebook is the same as not using it.mp478.26M
|   ├──3. Proof that using Jupyter Notebook is the same as not using it.srt14.12kb
|   ├──4. Python 2 vs Python 3.mp45.47M
|   └──4. Python 2 vs Python 3.srt6.05kb
├──15. Effective Learning Strategies for Machine Learning (FAQ by Student Request)
|   ├──1. How to Succeed in this Course (Long Version).mp412.99M
|   ├──1. How to Succeed in this Course (Long Version).srt14.66kb
|   ├──2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp438.95M
|   ├──2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt31.79kb
|   ├──3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp429.32M
|   ├──3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt16.03kb
|   ├──4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp437.62M
|   └──4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt23.04kb
├──16. AppendixFAQ Finale
|   ├──1. What is the Appendix (1).srt5.60kb
|   ├──1. What is the Appendix.mp45.45M
|   ├──1. What is the Appendix.srt3.72kb
|   ├──2. BONUS Where to get discount coupons and FREE deep learning material.mp437.81M
|   └──2. BONUS Where to get discount coupons and FREE deep learning material.srt12.44kb
├──2. Machine Learning Basics Review
|   ├──1. What is Machine Learning.mp470.85M
|   ├──1. What is Machine Learning.srt29.35kb
|   ├──10. Saving and Loading a Model.mp433.86M
|   ├──10. Saving and Loading a Model.srt7.90kb
|   ├──11. Suggestion Box.mp416.11M
|   ├──11. Suggestion Box.srt7.15kb
|   ├──2. Code Preparation (Classification Theory).mp465.13M
|   ├──2. Code Preparation (Classification Theory).srt32.25kb
|   ├──3. Beginner's Code Preamble.mp425.11M
|   ├──3. Beginner's Code Preamble.srt10.58kb
|   ├──3.1 Notebooks.html0.15kb
|   ├──4. Classification Notebook.mp460.47M
|   ├──4. Classification Notebook.srt14.66kb
|   ├──5. Code Preparation (Regression Theory).mp430.71M
|   ├──5. Code Preparation (Regression Theory).srt13.73kb
|   ├──6. Regression Notebook.mp464.67M
|   ├──6. Regression Notebook.srt19.38kb
|   ├──7. The Neuron.mp445.48M
|   ├──7. The Neuron.srt19.58kb
|   ├──8. How does a model learn.mp451.84M
|   ├──8. How does a model learn.srt22.05kb
|   ├──9. Making Predictions.mp436.85M
|   └──9. Making Predictions.srt12.61kb
├──3. Artificial Neural Networks (ANN) Review
|   ├──1. Artificial Neural Networks Section Introduction.mp429.85M
|   ├──1. Artificial Neural Networks Section Introduction.srt12.42kb
|   ├──2. Forward Propagation.mp446.75M
|   ├──2. Forward Propagation.srt12.41kb
|   ├──3. The Geometrical Picture.mp456.46M
|   ├──3. The Geometrical Picture.srt18.39kb
|   ├──4. Activation Functions.mp480.61M
|   ├──4. Activation Functions.srt34.90kb
|   ├──5. Multiclass Classification.mp441.41M
|   ├──5. Multiclass Classification.srt17.07kb
|   ├──6. How to Represent Images.mp470.49M
|   ├──6. How to Represent Images.srt24.87kb
|   ├──7. Code Preparation (ANN).mp450.97M
|   ├──7. Code Preparation (ANN).srt25.25kb
|   ├──8. ANN for Image Classification.mp447.71M
|   ├──8. ANN for Image Classification.srt15.36kb
|   ├──9. ANN for Regression.mp469.23M
|   └──9. ANN for Regression.srt20.53kb
├──4. Convolutional Neural Networks (CNN) Review
|   ├──1. What is Convolution (part 1).mp479.83M
|   ├──1. What is Convolution (part 1).srt32.04kb
|   ├──10. Batch Normalization.mp421.13M
|   ├──10. Batch Normalization.srt10.19kb
|   ├──11. Improving CIFAR-10 Results.mp472.94M
|   ├──11. Improving CIFAR-10 Results.srt20.90kb
|   ├──2. What is Convolution (part 2).mp422.30M
|   ├──2. What is Convolution (part 2).srt10.70kb
|   ├──3. What is Convolution (part 3).mp427.63M
|   ├──3. What is Convolution (part 3).srt12.55kb
|   ├──4. Convolution on Color Images.mp469.43M
|   ├──4. Convolution on Color Images.srt32.45kb
|   ├──5. CNN Architecture.mp480.68M
|   ├──5. CNN Architecture.srt44.47kb
|   ├──6. CNN Code Preparation.mp476.91M
|   ├──6. CNN Code Preparation.srt30.67kb
|   ├──7. CNN for Fashion MNIST.mp442.80M
|   ├──7. CNN for Fashion MNIST.srt12.58kb
|   ├──8. CNN for CIFAR-10.mp429.69M
|   ├──8. CNN for CIFAR-10.srt8.65kb
|   ├──9. Data Augmentation.mp434.99M
|   └──9. Data Augmentation.srt17.75kb
├──5. VGG and Transfer Learning
|   ├──1. VGG Section Intro.mp42.69M
|   ├──1. VGG Section Intro.srt5.84kb
|   ├──2. What's so special about VGG.mp412.19M
|   ├──2. What's so special about VGG.srt14.29kb
|   ├──3. Transfer Learning.mp438.12M
|   ├──3. Transfer Learning.srt16.40kb
|   ├──4. Relationship to Greedy Layer-Wise Pretraining.mp43.88M
|   ├──4. Relationship to Greedy Layer-Wise Pretraining.srt4.16kb
|   ├──5. Getting the data.mp41.77M
|   ├──5. Getting the data.srt4.40kb
|   ├──6. Code pt 1.mp411.51M
|   ├──6. Code pt 1.srt19.43kb
|   ├──7. Code pt 2.mp48.56M
|   ├──7. Code pt 2.srt7.48kb
|   ├──8. Code pt 3.mp44.22M
|   ├──8. Code pt 3.srt6.80kb
|   ├──9. VGG Section Summary.mp43.15M
|   └──9. VGG Section Summary.srt3.28kb
├──6. ResNet (and Inception)
|   ├──1. ResNet Section Intro.mp42.82M
|   ├──1. ResNet Section Intro.srt5.89kb
|   ├──10. Building ResNet - Putting it all together.mp45.91M
|   ├──10. Building ResNet - Putting it all together.srt7.91kb
|   ├──11. Exercise Apply ResNet.mp42.07M
|   ├──11. Exercise Apply ResNet.srt2.43kb
|   ├──12. Applying ResNet.mp43.59M
|   ├──12. Applying ResNet.srt4.84kb
|   ├──13. 1x1 Convolutions.mp43.11M
|   ├──13. 1x1 Convolutions.srt7.75kb
|   ├──14. Optional Inception.mp45.39M
|   ├──14. Optional Inception.srt13.62kb
|   ├──15. Different sized images using the same network.mp47.41M
|   ├──15. Different sized images using the same network.srt8.69kb
|   ├──16. ResNet Section Summary.mp44.19M
|   ├──16. ResNet Section Summary.srt4.53kb
|   ├──2. ResNet Architecture.mp410.39M
|   ├──2. ResNet Architecture.srt25.67kb
|   ├──3. Building ResNet - Strategy.mp42.66M
|   ├──3. Building ResNet - Strategy.srt4.68kb
|   ├──4. Uh-oh! What Happens if the Implementation Changes.mp425.34M
|   ├──4. Uh-oh! What Happens if the Implementation Changes.srt11.24kb
|   ├──5. Building ResNet - Conv Block Details.mp46.18M
|   ├──5. Building ResNet - Conv Block Details.srt7.04kb
|   ├──6. Building ResNet - Conv Block Code.mp48.97M
|   ├──6. Building ResNet - Conv Block Code.srt12.24kb
|   ├──7. Building ResNet - Identity Block Details.mp42.38M
|   ├──7. Building ResNet - Identity Block Details.srt2.69kb
|   ├──8. Building ResNet - First Few Layers.mp44.03M
|   ├──8. Building ResNet - First Few Layers.srt4.74kb
|   ├──9. Building ResNet - First Few Layers (Code).mp410.31M
|   └──9. Building ResNet - First Few Layers (Code).srt7.49kb
├──7. Object Detection (SSDRetinaNet)
|   ├──1. SSD Section Intro.mp45.69M
|   ├──1. SSD Section Intro.srt9.83kb
|   ├──10. RetinaNet with Custom Dataset (pt 2).mp460.52M
|   ├──10. RetinaNet with Custom Dataset (pt 2).srt19.31kb
|   ├──11. RetinaNet with Custom Dataset (pt 3).mp461.81M
|   ├──11. RetinaNet with Custom Dataset (pt 3).srt12.66kb
|   ├──12. Optional Intersection over Union & Non-max Suppression.mp44.59M
|   ├──12. Optional Intersection over Union & Non-max Suppression.srt9.73kb
|   ├──13. SSD Section Summary.mp42.83M
|   ├──13. SSD Section Summary.srt5.50kb
|   ├──2. Object Localization.mp45.69M
|   ├──2. Object Localization.srt12.50kb
|   ├──3. What is Object Detection.mp44.79M
|   ├──3. What is Object Detection.srt5.68kb
|   ├──4. How would you find an object in an image.mp47.85M
|   ├──4. How would you find an object in an image.srt16.34kb
|   ├──5. The Problem of Scale.mp44.16M
|   ├──5. The Problem of Scale.srt7.14kb
|   ├──6. The Problem of Shape.mp43.59M
|   ├──6. The Problem of Shape.srt7.26kb
|   ├──7. 2020 Update - More Fun and Excitement.mp434.59M
|   ├──7. 2020 Update - More Fun and Excitement.srt12.97kb
|   ├──8. Using Pretrained RetinaNet.mp488.23M
|   ├──8. Using Pretrained RetinaNet.srt23.15kb
|   ├──8.1 Notebooks.html0.15kb
|   ├──9. RetinaNet with Custom Dataset (pt 1).mp426.60M
|   └──9. RetinaNet with Custom Dataset (pt 1).srt9.50kb
├──8. Neural Style Transfer
|   ├──1. Style Transfer Section Intro.mp42.91M
|   ├──1. Style Transfer Section Intro.srt5.95kb
|   ├──2. Style Transfer Theory.mp419.94M
|   ├──2. Style Transfer Theory.srt22.38kb
|   ├──3. Optimizing the Loss.mp47.24M
|   ├──3. Optimizing the Loss.srt16.07kb
|   ├──4. Code pt 1.mp49.46M
|   ├──4. Code pt 1.srt14.97kb
|   ├──5. Code pt 2.mp415.71M
|   ├──5. Code pt 2.srt14.26kb
|   ├──6. Code pt 3.mp45.74M
|   ├──6. Code pt 3.srt6.90kb
|   ├──7. Style Transfer Section Summary.mp42.50M
|   └──7. Style Transfer Section Summary.srt4.60kb
└──9. Class Activation Maps
|   ├──1. Class Activation Maps (Theory).mp453.42M
|   ├──1. Class Activation Maps (Theory).srt13.88kb
|   ├──2. Class Activation Maps (Code).mp4104.76M
|   └──2. Class Activation Maps (Code).srt15.57kb

**** Hidden Message *****

shkinn 发表于 2024-3-13 22:33

:)

1243420688 发表于 2024-3-13 22:34

强烈支持楼主ing……

codesnow 发表于 2024-3-13 22:35

激动人心,无法言表!

hnfjj 发表于 2024-3-14 00:07

: 深度学习:高级计算机视觉教程(GAN、SSD等!) [

missnybl 发表于 2024-3-14 01:01

淡定,淡定,淡定……

woodfire 发表于 2024-3-14 01:14

强烈支持楼主ing……

mcga 发表于 2024-3-14 01:41

强烈支持楼主ing……

deep123 发表于 2024-3-14 05:26

强烈支持楼主ing……

kevinZheng 发表于 2024-3-14 05:59

强烈支持楼主ing……
页: [1] 2 3 4 5 6 7 8 9
查看完整版本: 深度学习:高级计算机视觉教程(GAN、SSD等!)