Convex Optimization 凸优化2020春季学期
课程目录:├──Books
| ├──bv_cvxbook.pdf7.97M
| └──First-order Methods in.pdf7.45M
├──HW
| └──CVX2020HW1.zip93.43kb
├──Lecture_notes2019Spring
| └──Lecture_notes2019Spring.zip367.78M
├──Project
| ├──6G
| | ├──Intelligent Reflecting Surface Enhanced Wireless.pdf1.82M
| | └──Weighted Sum-Rate Maximization for.pdf890.92kb
| ├──edgeML
| | ├──Fast and Communication Efficient Framework for Distributed Machine Learning.pdf2.25M
| | ├──Stochastic Gradient Coding for Straggler.pdf1.09M
| | ├──An algorithmic framework for fast federated optimization.pdf2.20M
| | └──High-Dimensional Stochastic Gradient Quantization for Communication.pdf1.36M
| ├──LearnOpt
| | ├──learning_to_optimize.pdf908.78kb
| | ├──Active Learning for Multi-Objective Optimization.pdf1.55M
| | ├──Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems Exploiting Deep Reinforcement.pdf3.51M
| | ├──ADMM-CSNet.pdf5.82M
| | ├──Learning Optimal Resource Allocations.pdf950.98kb
| | └──Learning Proximal Operator Methods .pdf2.12M
| ├──Optimization
| | ├──DC for sparsity optimization problems.pdf1.09M
| | └──Low-Rank Matrix Completion by Riemannian Optimization.pdf1.10M
| ├──latex_template.zip158.05kb
| ├──project_cvx.pdf112.26kb
| └──Ref for Project(Up-to-date).pdf72.21kb
├──Introduction
| ├──Introduction1.MP4388.45M
| ├──Introduction2.MP4236.68M
| ├──Introduction3.MP4138.31M
| ├──Introduction4.MP4191.72M
| ├──Introduction_Spring2020.pdf3.28M
| └──Introduction_Spring2020_note.pdf3.78M
├──ConvexSet
| ├──Convex Set.pdf479.63kb
| ├──Convex Set_note.pdf5.03M
| ├──CVXSet1.MP486.71M
| ├──CVXSet2.MP4299.63M
| ├──CVXSet3.MP4278.38M
| └──CVXSet4.MP4483.62M
├──convexfunctions
| ├──convexfunctions.pdf320.90kb
| ├──convexfunctions01.MP4340.64M
| ├──convexfunctions02.MP4338.99M
| ├──convexfunctions03.MP4376.73M
| └──convexfunctions_note.pdf6.13M
├──convexproblems
| ├──convexproblems.pdf606.46kb
| ├──convexproblems01.MP4424.23M
| ├──convexproblems02.MP4789.75M
| ├──convexproblems03.MP4587.33M
| ├──convexproblems04.MP4424.81M
| └──convexproblems_note.pdf14.30M
├──Lagrangeduality
| ├──Lagrangeduality.pdf206.16kb
| ├──Lagrangeduality01.MP4229.95M
| ├──Lagrangeduality02.MP4130.94M
| ├──Lagrangeduality03.MP4572.77M
| └──Lagrangeduality_note.pdf4.51M
├──DCP
| ├──CVXDCP.MP4368.66M
| ├──CVXDCP.pdf598.06kb
| └──CVXDCP_note.pdf1.29M
├──grad_descent_unconstrained
| ├──grad_descent_unconstrained-note.pdf47.98M
| ├──grad_descent_unconstrained.pdf4.35M
| ├──grad_descent_unconstrained01.MP4381.22M
| ├──grad_descent_unconstrained02.MP4570.76M
| ├──grad_descent_unconstrained03.MP4360.24M
| └──StrongConvexSmooth.pdf339.66kb
├──grad_descent_constrained
| ├──grad_descent_constrained-note.pdf26.60M
| ├──grad_descent_constrained.pdf2.99M
| ├──grad_descent_constrained01.MP4210.04M
| ├──grad_descent_constrained02.MP4246.69M
| └──grad_descent_constrained03.MP4140.84M
├──subgradient_methods
| ├──subgradient_methods-note.pdf14.87M
| ├──subgradient_methods.pdf3.00M
| ├──subgradient_methods01.MP4280.69M
| ├──subgradient_methods02.MP4303.34M
| └──subgradient_methods03.MP4181.10M
├──mirror_descent
| ├──mirror_descent-note.pdf223.55M
| ├──mirror_descent.pdf9.88M
| ├──mirror_descent01.MP4493.71M
| └──mirror_descent02.MP4300.62M
├──proximal_gradient
| ├──proximal_gradient-note.pdf33.35M
| ├──proximal_gradient.pdf32.35M
| ├──proximal_gradient01.MP4409.32M
| └──proximal_gradient02.MP4217.20M
├──accelerated_gradient
| ├──accelerated_gradient-note.pdf15.45M
| ├──accelerated_gradient.pdf4.00M
| ├──accelerated_gradient01.MP4353.48M
| └──accelerated_gradient02.MP4284.79M
├──smoothing
| ├──smoothing-note.pdf5.47M
| ├──smoothing.MP4396.42M
| └──smoothing.pdf1.50M
├──dual_method
| ├──dual_method-note.pdf3.86M
| ├──dual_method.pdf1.73M
| ├──dual_method01.MP4264.94M
| └──dual_method02.MP4365.17M
├──ADMM
| ├──ADMM-note.pdf2.40M
| ├──ADMM.pdf743.23kb
| ├──ADMM01.MP499.62M
| └──ADMM02.MP4438.89M
├──stochastic_gradient
| ├──stochastic_gradient-note.pdf5.27M
| ├──stochastic_gradient.pdf2.19M
| ├──stochastic_gradient01.MP4170.83M
| └──stochastic_gradient02.MP4227.16M
├──quasi_Newton
| ├──quasi_Newton-note.pdf10.48M
| ├──quasi_Newton.pdf3.92M
| ├──quasi_Newton01.MP4134.53M
| └──quasi_Newton02.MP4177.18M
├──Applications
| ├──wireless_networks_I.pdf3.58M
| ├──wireless_networks_II.pdf2.77M
| ├──edgeAI.pdf9.25M
| └──RIS_Yuanming.pdf2.83M
├──Syllabus.pdf75.84kb
└──凸优化2020_学习指南.pdf71.46kb
**** Hidden Message ***** 谢谢分享!!! 感谢楼主分享谢谢了学习一下 nvex Optimization 凸优化2020春季学期 谢谢分享。。。。。。 muyangf,如果您要查看本帖隐藏内容请回复
Convex Optimization 凸优化2020春季学期 Convex Optimization 凸优化2020春季学期 Convex Optimization 凸优化2020春季学期 s's's's's's's's's'sssssssssss